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When a temperature gradient is applied to a polymer solution, the polymer typ-
ically migrates to the colder regions of the fluid as a result of thermal diffusion
(Soret effect). However, in recent thermodiffusion experiments on poly(ethylene-
oxide) (PEO) in a mixed ethanol/water solvent it is observed that for some solvent
compositions the polymer migrates to the cold side, while for other compositions it
migrates to the warm side. In order to understand this behavior, we have devel-
oped a two-chamber lattice model for thermodiffusion in liquid mixtures and dilute
polymer solutions. For mixtures of PEO, ethanol, and water we take compressibility
and hydrogen bonding between PEO and water molecules into account and calculate
Soret coefficients for given temperature, pressure, and solvent composition. The sign
of the Soret coefficient of PEO is found to change from negative (polymer enriched
in warmer region) to positive (polymer enriched in cooler region) as the water con-
tent of the solution is increased, in agreement with experimental data. We note a
close relationship between the solvent quality and the partitioning of the polymer
between the two chambers, which may explain why negative Soret coefficients for
polymers are so rarely observed. We also investigate the Soret effect in ethanol water
mixtures and find a change in sign of the Soret coefficient of water at high water
concentrations in qualitative agreement with experimental data.
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I. INTRODUCTION

A temperature gradient applied to a fluid mixture generally induces a net mass
flow, which results in the formation of a concentration gradient. This effect is known
as thermodiffusion or the Ludwig-Soret effect [1–4]. The Soret coefficient ST relates
the steady state concentration gradient to the imposed temperature gradient. By
convention, the Soret coefficient of component i is positive if component i is enriched
in the cooler region [5]. Thermal diffusion has long been used as an effective tool
for separating mixtures of isotopes [4]. More recently, the effect has been used to
characterize mixtures of complex fluids (see for example Refs. 5–8).

In liquid mixtures whose components differ widely in molecular mass, such as
polymer solutions [6, 7] and colloidal suspensions [8], it is typically the heavier com-
ponent that migrates to the cold region. There are, however, exceptions. In 1977,
Giglio and Vendramini found a negative Soret coefficient for poly(vinyl alcohol) in
water [9]. Very recently, de Gans et al. [10, 11] reported results of thermal diffusion
forced Raleigh scattering (TDFRS) measurements on solutions of poly(ethylene ox-
ide) (PEO) in mixtures of ethanol and water. In pure water, PEO shows the expected
migration to the cold region of the fluid (ST > 0). However, in solutions with low
water content, PEO is found to migrate to the warmer region of the fluid (ST < 0).
Although changes in sign of the Soret coefficient have been reported for a number
of liquid mixtures of small-molecule fluids, including alcohol solutions [12–16], the
PEO/ethanol/water system appears to be the first polymer solution for which such
a sign change has been observed.

Thermodiffusion in a binary fluid mixture is described by the flux of one of the
components in response to a temperature and concentration gradient.[1] The flux is
given by

J1 = −ρD∇c1 − ρ c1(1− c1)D
′∇T , (1)

where D is the mutual diffusion coefficient, D′ the thermal diffusion coefficient of
component 1, ρ the total mass density, c1 the mass fraction of component 1, and
T is the temperature. Here the pressure is assumed to be constant throughout the
mixture and the flux J1 describes the flow of component 1 with respect to the center
of mass of the system.[1] Eventually, the system reaches a stationary state in which
the flux J1 vanishes. Inserting J1 = 0 into Eq. (1) yields

− 1

c1(1− c1)

∇c1
∇T =

D′

D
. (2)

The Soret coefficient of component 1 is the ratio of thermal and mutual diffusion
coefficients

ST =
D′

D
. (3)

More generally, we define the Soret coefficient of component i of a mixture as

ST = − 1

ci(1− ci)

dci
dT
. (4)
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For ternary mixtures, such as PEO in a mixed solvent, concentration gradients and
fluxes of two of the components are considered. While Eqs. (1)–(3) are generalized
[1, 17] the Soret coefficient of component i can still be defined through Eq. (4).

Thermal diffusion in liquid mixtures is not well understood and even the sign of
the Soret coefficient cannot generally be predicted (see e.g. Refs. 4–6). Due to the
complexity of the task, attempts to extend the kinetic gas theory[18] of thermodif-
fusion to the liquid state have so far been unsuccessful [4, 6]. Molecular dynamics
simulations (for a review see Ref. 19) have become an important tool in the investi-
gation of thermodiffusion in small-molecule liquids. Long computation times make it
difficult, however, to address thermodiffusion in polymeric systems.

In this work, we investigate the Soret effect in dilute polymer solutions and liquid
mixtures with the aid of a recently developed [20, 21] two-chamber lattice model.
Following traditional experimental methods [1–4], we consider a system divided into
two chambers of equal size that are maintained at slightly different temperatures.
Particles are free to move between the chambers, which do not otherwise interact.
If the pressure differences between the chambers are small enough to be neglected,
the Soret coefficient can be determined from the difference in composition of the
solutions in the two chambers [1–4]. We start by describing the lattice model for
PEO in ethanol-water mixtures in Section II. In Section III we introduce our two-
chamber lattice model to determine Soret coefficients of liquid mixtures. Results of
our calculations are presented in Section IV and compared with experimental data,
where available. In Section V we discuss the work presented here.

II. LATTICE MODEL FOR PEO IN ETHANOL/WATER MIXTURES

Solutions of high molecular weight poly(ethylene oxide) (PEO) in ethanol and wa-
ter have interesting properties. Hydrogen bonding between PEO and water molecules
plays an important role in aqueous solutions of PEO (see e.g. Refs. 22, 23). Water is
a good solvent for PEO at standard temperature and pressure. However, the solvent
quality decreases with temperature and a miscibility gap opens above a lower critical
solution temperature [23]. Ethanol, on the other hand, is a poor solvent for PEO at
room temperature but the solubility increases with temperature [10]. In mixtures of
ethanol and water at standard temperature and pressure, the water content deter-
mines the solubility of PEO. For the molecular weight considered in this work, the
transition between poor and good solvent condition appears between a water content
of 5% and 10% by weight [10, 11]. Light scattering experiments [10] show that the
PEO chains expand with increasing water content, indicating that the addition of
water improves the solvent quality.

In order to describe dilute solutions of poly(ethylene oxide) (PEO) in mixtures of
ethanol and water, we have developed a simple lattice model for a polymer chain in a
mixed compressible solvent. At a given temperature, pressure, and composition, the
solution is represented by a simple cubic lattice with N sites, of which Nc, Ns, and
Nw are occupied by the polymer (PEO), the first solvent (ethanol), and the second
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Chamber A, temperature TA Chamber B, temperature TB

FIG. 1: Two-dimensional illustration of the two-chamber lattice model for the PEO in
mixtures of ethanol and water. In this figure, chamber A contains the polymer chain,
indicated by circles connected by line segments. The unconnected circles represent sites
occupied by ethanol, while the angular shapes represent sites occupied by water.

solvent (water), respectively. In order to account for compressibility, we allow sites
to be unoccupied so that N = Nc +Ns +Nw +Nv, where Nv is the number of voids.
The total volume of the lattice is V = v0N , where v0 is the volume of one elementary
cube.

Interactions between occupied nearest neighbor sites are described by interaction
energies εij, where the subscripts indicate the occupants of the sites (p for polymer,
s and w for the solvents; voids are assumed to have zero interaction energies). In
aqueous solutions, hydrogen bonding between PEO and water plays an important
role (cf. Ref. 22). In order to account for these specific interactions, we introduce an
orientational degree of freedom in the description of water. Each elementary cube
occupied by water is assumed to have one special face. If this face is exposed to a
polymer segment, the interaction energy is εpw;s (strongly attractive) otherwise εpw;n

(non-specific), see the left panel of Fig. 1 for an illustration.
From an exact enumeration of all self-avoiding walks of length Nc − 1 on a simple

cubic lattice (cf. [24, 25]), we determine the number c(m) of chain conformations
with m segment pair contacts and the average squared radius of gyration R̄2

g(m) as
a function of m. In this work, Nc = 17. In solution, a chain conformation with m
pair contacts has nn = 4Nc + 2− 2m nearest neighbor (nn) sites, which are occupied
by ni, i ∈ {s,w, v} solvent particles and voids. With the aid of the random mixing
approximation for all but the polymer contacts, the canonical partition function of
the system can be written as

Zpol(N, T,Nw, Ns) = (5)

N
∑
m

c(m)
∑
[nw]

6Nw−nw

(
nn

nw

)(
N − nn −Nc

Nw − nw

)

×
∑
[ns]

(
nn − nw

ns

)(
N − nn −Nc − (Nw − nw)

Ns − ns

)

×e−β(mεpp+nsεps)
(
5e−βεpw;n + e−βεpw;s

)nw
e−βEr ,
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where, as before, c(m) is the number of chain conformations with m polymer-polymer
contacts. The square brackets around the summation indices indicate that the sum-
mation is performed consistent with the available nearest neighbor sites and the total
filling of the lattice. The energy Er denotes the contribution to the total energy due
to solvent-solvent interactions evaluated in random mixing approximation [26], cf.
Eq. (9) below.

The pressure of the system is calculated from

P =
kBT

v0

(
∂ lnZpol

∂N

)
Ns,Nw,Nc

. (6)

By performing partial summations over the terms in Eq. (5) the probabilities for
specific sets of states can be determined. If we write the partition function as

Zpol ≡
∑

m,[nw],[ns]

Zm,nw,ns , (7)

the average radius of gyration 〈R2
g〉 is given by

〈R2
g〉 = Z−1

pol

∑
m,[nw],[ns]

R̄2
g(m)Zm,nw,ns . (8)

In order to describe properties of ethanol-water mixtures and in order to perform
the two-chamber calculations discussed below, the canonical partition function of a
chamber without polymer is required. Consider a lattice of N sites occupied by the
two types of solvent and voids, N = Ns +Nw +Nv. Denoting the filling fractions of
ethanol and water by φs = Ns/N and φw = Nw/N and assuming random mixing, the
internal energy is given by [26]

Enop =
z

2
N

(
εssφ

2
s + εwwφ

2
w + 2εwsφsφw

)
. (9)

Accordingly, the canonical partition function of the lattice without polymer takes the
form

Znop(N, T,Ns, Nw)

= 6Nw

(
N
Nw

) (
N −Nw

Ns

)
e−βEnop . (10)

Our lattice model for PEO in ethanol-water mixtures has eleven system-dependent
parameters. The determination of these parameters and the relation between physical
properties and model variables is described in detail in Ref. [20]. Seven of the system-
dependent parameters describe the thermodynamics of the pure components and are
determined from a comparison with equation-of-state data of the pure components.
The remaining four parameters are needed for the description of the mixtures. In Ref.
[20] we employed a geometric-mean approximation for ethanol-water interactions and
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FIG. 2: Density of ethanol-water mixtures at T = 293 K and P ≈ 0.1 MPa. The symbols
represent tabulated values [27], the line represents densities calculated from our lattice
model.

used the chain dimensions of the short PEO chains as an indicator for solvent quality
to determine values for the polymer-solvent interaction energies. In this work we
retain the system-dependent parameters of Ref. [20] except for the mixed interac-
tion energy εws that describes the ethanol-water interactions. The Soret coefficient
of water in ethanol-water mixtures changes sign at a water concentration of around
72% by weight [14, 15]. In order to investigate thermodiffusion in ethanol-water mix-
tures, we determined a value of εws from a comparison with tabulated values for the
density of ethanol-water mixtures [27], weighted to insure a good fit at high water
concentrations. In Fig. 2 we compare calculated and tabulated values for the density
of ethanol-water mixtures. As expect, the agreement is very good for mixtures with
high water contents. Deviations between tabulated and calculated values increase
with decreasing water content but do not exceed 2%. The system-dependent param-
eters are presented in Table I. Since chain dimensions are an indicator for solvent
quality, we present in Fig. 3 graphs for the chain dimensions calculated with the aid
of the system-dependent parameters presented in Table I. The chain expands (sol-
vent quality improves) with increasing water content of the solution, in qualitative
agreement with experimental observation [10, 11]. For PEO in ethanol, the chain di-
mensions increase with increasing temperature while they decrease with temperature
for PEO in water, in agreement with observed changes in solvent quality, cf. Ref. [23].

III. TWO-CHAMBER SYSTEM

Having established a model for the thermodynamic and structural properties of
the mixtures, we turn to thermodiffusion. We consider a system of two chambers with
slightly different temperatures and determine the probability to find the polymer in
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FIG. 3: Radius of gyration squared, R2
g, as calculated from Eq. (8). The left panel shows

chain dimensions as a function of solvent composition at temperature T = 293 K, pressure
P ≈ 0.1 MPa, and a PEO concentration of 5 g/L. The right panel shows the temperature
variation at constant pressure of the chain dimensions of PEO in the two pure solvents,
ethanol and water. The dashed line indicates the chain dimensions, R2

g(θ
∗), of the isolated

17 bead chain at the θ temperature of the infinite chain.

TABLE I: System-dependent parameters for the PEO/ethanol/water system

lattice site volume v0 = 5.255× 10−5m3/mol
εij in J/mol scale factors

ethanol εss = −2306 ss = 1
water εww = −3306 sw = 0.3362
PEO εpp = −1153 sp = 0.6318

mixed interactions
ethanol/water εws = −3600
PEO/water εpw,n = 2660

εpw,s = −8020
PEO/ethanol εps = 2660

the warmer of the two chambers, see Fig. 1. Assuming that the chambers are non-
interacting, the canonical partition function of the system for a given occupation of
the chambers is the product of the individual partition functions. To ease notation for
the two-chamber sum of states, we define the canonical partition for a single chamber
as

Z(N, T,Nw, Ns, Np)

=

{
Zpol(N, T,Ns, Nw) for Np = 1
Znop(N, T,Ns, Nw) for Np = 0

(11)

where Np ∈ {0, 1} is the number of polymer chains in the chamber.
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For the mixed solvent system considered here, the concentration of the two solvents
will generally be different in the warm and cold regions of a fluid. Since we have no
a priori information about concentrations (or chemical potentials) of the solvents,
we consider all distributions of particles consistent with fixed total particle numbers.
The sum of states is then given by

Q =
1∑

Np,A=0

∑
[Nw,A]

∑
[Ns,A]

Z(NA, TA, Nw,A, Ns,A, Np,A)

× Z(N −NA, TB, Nw −Nw,A, Ns −Ns,A, 1−Np,A),

(12)

where, as before, square brackets indicate summations consistent with the total num-
bers of particles and lattice sites. Chamber A is considered the warmer chamber so
that δT = TA − TB > 0, and equal-sized chambers are used, NA = NB = N/2. As
we are performing the calculation of the terms in the sum of states, we monitor for
each chamber the composition and the pressure of the mixtures. This allows us to
calculate the average quantities for each chamber by performing weighted sums. For
example, the average mass fraction of component i in chamber A, is calculated from

ci,A =
1

Q

1∑
Np,A=0

∑
[Nw,A]

∑
[Ns,A]

ci(Nw,A, Ns,A, Np,A) (13)

× Z(NA, TA, Nw,A, Ns,A, Np,A)

× Z(N −NA, TB, Nw −Nw,A, Ns −Ns,A, 1−Np,A),

where ci is the mass fraction of component i. For the case of the solvent mixture
without polymer, the equation simplifies to

ci,A =
1

Q

∑
[Nw,A]

∑
[Ns,A]

ci(Nw,A, Ns,A, 0) (14)

× Z(NA, TA, Nw,A, Ns,A, 0)

× Z(N −NA, TB, Nw −Nw,A, Ns −Ns,A, 0).

The probability to find the polymer in chamber A in this model is given by

qA =
1

Q

∑
[Nw,A]

∑
[Ns,A]

Zpol(NA, TA, Nw,A, Ns,A) (15)

× Znop(N −NA, TB, Nw −Nw,A, Ns −Ns,A).

This probability is related to an internal energy difference of two chambers at the
same temperature:

qA − 1

2
� −1

4

〈Unop〉 − 〈Upol〉
kBT

δT

T
. (16)
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The angular brackets indicate an average over all configurations of particles in two
chambers at the same temperature T , where the polymer is confined to one of the
chambers. Upol and Unop are the average internal energies of the chamber with and
without polymer at fixed composition. For the small temperature differences δT =
10−4 K, corresponding to δT/T � 3 × 10−7, employed in our calculations, values
for the probability qA calculated from Eqs (15) and (16) agree to more than five
digits. The excess probability qA − 1/2 is proportional to the temperature difference
and independent of the polymer concentration for dilute solutions. Relations similar
to Eq. (16) can be derived for the probability of finding a given number of solvent
particles in the warmer chamber A. They show that the difference between the average
numbers of particles in chambers A and B is proportional to δT .

IV. RESULTS

We have applied our lattice model to ethanol-water mixtures and to solutions
of PEO in ethanol/water mixtures under a variety of conditions. As noted above,
calculated values for composition differences in the two chambers are expected to be
proportional to the temperature difference δT = TA − TB for sufficiently small values
of δT . We find this to be the case for a large range of δT values and used δT = 10−4 K
throughout the calculations.

In Fig. 5 we present values for the Soret coefficient of water in ethanol-water
mixtures calculated according to Eqs. (14) and (4). For comparison, we include
experimental data by Kolodner et al. [14], Zhang et al. [15], and Dutrieux et al.
[16]. Both experiment and theory show a change in sign of the Soret coefficient as the
water content of the solution is increased. The deviations between calculated values
and experimental data are smallest at high water concentrations. This illustrates the
importance of a good description of the thermodynamic properties of the mixture.
In our earlier work [20], where we employed a geometric mean approximation for the
mixed interactions, we found no sign-change for the Soret coefficient of water.

In Fig. 5 we present values for the Soret coefficient of PEO at room temperature
(293 K), atmospheric pressure (0.1 MPa), and a PEO concentration of 5 g/L, calcu-
lated according to Eqs. (13) and (4). For comparison, we include experimental data by
Wiegand and coworkers [10, 28]. Both experiment and theory show a change in sign
of the Soret coefficient as the water content of the solution is increased. For low water
concentrations of the solution, the polymer is more likely to be found in the higher
temperature chamber; for high water concentrations the opposite is true. Differences
between theory and experiments are most pronounced at low water concentrations,
where our calculations overestimate the Soret effect. This is a consequence of our
choosing a mixed interaction parameter εps that emulates for short chains the poor
solvent conditions that long PEO chains experience in ethanol [21]. A comparison
of Fig. 5 with the chain-dimension graph Fig. 3 shows a correlation between solvent
quality and thermodiffusion. In general, as the solvent quality increases, indicated by
an increase in chain dimensions, the Soret coefficient becomes more positive.
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FIG. 4: Soret coefficient of water in mixtures of ethanol and water at approximately 20o

Celsius. The symbols indicate experimental data ( triangles: Kolodner et al. [14], circles:
Zhang et al. [15], squares: Dutrieux et al. [16] ), the line represents values calculated from
our lattice model.

FIG. 5: Soret coefficient of PEO in mixtures of ethanol and water at room temperature and
atmospheric pressure. The symbols represent experimental data by de Gans et al.[10] and
Kita et al.[28], the line is the result of our lattice model calculations.

V. DISCUSSION

In this work, we have presented a two-chamber lattice-model approach to deter-
mine Soret coefficients of liquid mixtures. A dilute polymer solution is represented
by a simple cubic lattice occupied by a single polymer chain, solvent particles and
voids. Exact enumeration results for an isolated chain allow us to construct partition
functions for the polymer-solvent system without invoking a random mixing approxi-
mation for contacts with polymer sites. Interactions between solvent particles, on the
other hand, are evaluated in a random-mixing approximation. Enumeration results
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are also used to calculate the radius of gyration of the chain in solution, which allows
us to monitor the solvent quality of the solution. In order to investigate thermodiffu-
sion, we assume that the lattice is divided into two non-interacting sublattices of equal
size that are maintained at slighty different temperatures. For a given occupation of
the sublattices, the partition function of the combined system is a product of the
canonical partition functions of the sublattices. We consider all possible distributions
of polymer chain and solvent particles among the sublattices. The sum of states of
the system is calculated by adding up the total partition functions for all distribu-
tions, while average quantities are calculated by performing the appropriate weighted
sums. The Soret coefficient of component i is determined from the difference between
the average concentration of component i in the warm and cold chambers. As in the
earlier work on heat of transport (cf. Denbigh [29]) kinetic energy contributions are
neglected in our calculations. However, we do not approximate the heat of transport
by a difference in potential energy. Instead, the probability to find the polymer in the
warmer of the two chambers can be related to a difference in average internal energy
that reflects both enthalpic and entropic contributions.

We have investigated the Ludwig-Soret effect in mixtures of ethanol and water.
Values for the Soret coefficient of water calculated from our lattice mode change sign
as the water concentration increases in qualitative agreement with experimental data
[14–16]. Since our model for ethanol and water is very simple, we should not expect
quantitative agreement between theory and experiment. We are currently working on
a model that includes specific interactions between the molecules which may improve
the description of both ethanol-water mixtures and solutions of PEO in such mixtures.

Our model reproduces some of the important thermodynamic properties of the
PEO/ethanol/water system. In particular, for PEO in mixed solvents, the solvent
quality as monitored by the radius of gyration increases as the water content of the
solution increases[10, 11]. Similarly, increasing the temperature increases the solvent
quality for mixtures with low water content. For mixtures with high water content, on
the other hand, increasing the temperature reduces the solvent quality in agreement
with observations on PEO in water (cf. Ref. 23). Our two-chamber approach allows us
to calculate Soret coefficients of PEO for given temperature, pressure and composition
of the solvent. As expected for dilute solutions [30], the results are independent of
the polymer concentration. In qualitative agreement with experimental data of de
Gans et al.[10, 11] and Kita et al.[28], the calculated Soret coefficients are negative for
solutions with low water content and positive for solutions with high water content.

A comparison of the results for the radius of gyration of the chain and the values of
the Soret coefficients reveals a close relationship between the solvent quality and the
partitioning of the polymer between the chambers. In general, the Soret coefficient
of the polymer becomes more positive as the solvent quality increases. A typical
experiment on polymers in good solvents is thus expected to yield positive Soret
coefficients. We expect negative Soret coefficients to be observed for polymers that
would be insoluble were it not for specific interactions between solvent molecules
and sites on the polymer. It appears that both polymer systems for which negative
Soret coefficients have been observed, the solutions of PEO in a mixed ethanol/water
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solvent[10, 11, 28] and the solution of poly(vinyl alcohol) in water [9, 31], belong to
this category.
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W. Köhler and S. Wiegand (Springer, Berlin, 2002), pp. 3–23.



13

[20] J. Luettmer-Strathmann, J. Chem. Phys., in press, and arXiv:cond-mat/0304615.
[21] J. Luettmer-Strathmann and M. Boiwka, in preparation.
[22] C. Jeppesen and K. Kremer, Europhys. Lett. 34, 563 (1996).
[23] E. E. Dormidontova, Macromolecules 35, 987 (2002).
[24] A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Physics Letters A 162,

469 (1992).
[25] A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, J. Stat. Phys. 67, 1083

(1992).
[26] S. M. Lambert, Y. Song, and J. M. Prausnitz, in Equations of state for fluids and fluid

mixtures, edited by J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White Jr.
(Elsevier, Amsterdam, 2000), chap. 14, pp. 523–588.

[27] R. C. West, ed., Handbook of Chemistry and Physics (Chemical Rubber, Boca Raton,
FL, 1978), 59th ed.

[28] R. Kita and S. Wiegand, to be published.
[29] K. G. Denbigh, Trans. Faraday Soc. 48, 1 (1952).
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